
Visual FoxPro Client-Server Handbook

© REDWARE 2004. 1

Visual FoxPro Client Server Handbook
Third Edition

Author: Stamati Crook

 redware research ltd
 stamati.crook@redware.com
Date: 18 August 2004
Version: 5.1
Document: vfphandbook60.doc

 REDWARE 1996, 2001.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 2

Shareware Licence

Copyright REDWARE 1996, 2001, 2004.

All rights reserved.

This book is shareware and may be downloaded and stored on a single computer for 30
days for the purposes of evaluation only. Registration is required by making the

appropriate payment at the redware website. An alternative registration is possible if you
make a link and a (favourable) comment available from your website and register your link

on the redware website.
Register now at http://www.redware.com/register.html.
The book is copyright and no part shall be reproduced, stored in a retrieval system, or
transferred by any means: electronic, mechanical, photocopying, recording, or otherwise
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken
in the preparation of this handbook, the publisher and author assume no responsibility for
errors or omissions. Neither is any liability assumed for damages resulting from the use of
the information contained herein. For information, please contact:

redware research ltd, 104 Tamworth Road, Hove BN3 5FH, England.

http://www.redware.com

Acknowledgements

Third Edition August 2004

Thanks to the FoxPro team for finally making an improvement to the excellent client

server capabilities of Visual FoxPro and to redware customers worldwide for employing
our consultancy services to convert applications to the client server platform.

Second Edition September 2001

Thank you this time to Victor, Phong and especially James for helping build really big
database systems during our roller coaster ride at First Telecom. Thanks also to the job
market for letting me take a break and update this book.

First Edition December 1996

Thank you to the technical team at F1 Computing Systems past and present for eight
years of implementing FoxPro projects. All of my FoxPro experience has resulted from
working with Ian, Phong, James, Danny and David on various projects during my eight
years at F1. They still have the best training courses and FoxPro team in the UK.
Thank you especially to James Thornton at F1 Computing who put me straight on a few
things regarding SQL Server. Any errors remaining in this book are, of course, down to
me and I apologise in advance for them. Please email me with your comments, good and
bad.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 3

1. Contents

CONTENTS .. 3

1. OBJECTIVES .. 5

2. TUTORIAL ... 6

Create a Connection ... 6
Create a Remote View .. 6
Updating Data ... 7
Table Buffering .. 7
Using Parameterised Remote Views .. 7
Executing a Stored Procedure .. 8
Creating a client server Form .. 8
Create a Cursor with the CursorAdapter Object ... 9
Summary ... 11

3. CONNECTIONS .. 13

ODBC OPEN DATABASE CONNECTIVITY ... 13
ODBC String Connection .. 14
ODBC Data Source Administrator ... 14
ODBC Performance Tips .. 15

CONNECTION DESIGNER ... 16
Data Source .. 16
Data Processing Options .. 16
TimeOut Intervals .. 17
CREATE CONNECTION .. 17

PROGRAMMING CONNECTIONS .. 17
Connection Properties ... 17

SETTING DEFAULTS .. 18
ASYNCHRONOUS CONNECTIONS .. 19

4. REMOTE VIEWS ... 21

VIEW DESIGNER ... 21
Creating a Remote View ... 21
Fields ... 22
Filter .. 23
Join .. 24
Order By .. 25
Group By ... 25
Update Criteria .. 26

PARAMETERISED VIEWS .. 28
CREATE SQL VIEW ... 28

VIEW PROPERTIES .. 29
Shared Connections .. 30
Update Criteria .. 30

WORKING WITH REMOTE VIEWS .. 31
PARAMETERISED VIEWS .. 31

5. CURSORADAPTER CLASS ... 33

CURSORADAPTER ... 33
Using parameters to filter data .. 34
Updating data .. 35
CursorAdapter Event Model .. 36
Attaching an Existing Cursor ... 38

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 4

Using the CursorAdapter Builder .. 38
Building a CursorAdapter with cabuilder.prg ... 38

USING CURSORADAPTER OBJECTS IN A FORM ... 38

6. DATA BUFFERING ... 39

SPECIFYING DATA BUFFERING ... 39
SAVING CHANGES ... 40
REVERTING CHANGES ... 41
DETERMINING UPDATES .. 41
ERROR HANDLING ... 42
COMMIT AND ROLLBACK .. 44

7. FORM AND DATA ENVIRONMENT PROPERTIES ... 45

8. OPTIMISING VIEWS AND CURSORADAPTERS .. 46

Advanced Options ... 46
Remote View Properties.. 47
Recommended Settings .. 48

9. SQL PASS-THROUGH ... 49

Asynchronous Mode ... 50
Batch Mode ... 50

SQL PASS THROUGH AND DATA BUFFERING.. 51
PREPARING SQL STATEMENTS ... 52
ODBC EXTENSIONS.. 53
STORED PROCEDURES .. 54

10. ADO AND XML .. 55

11. OFFLINE VIEWS ... 56

12. CLIENT-SERVER APPLICATION DESIGN .. 57

PERFORMANCE BOTTLENECKS .. 57
PARAMETERISED VIEWS .. 57
LOCAL VALIDATIONS ... 58
TRANSACTIONS ... 58
STORED PROCEDURES .. 59
SQL PASS THROUGH .. 59
CONNECTIONS .. 59
MICROSOFT TRANSACTION SERVER .. 60

13. DATABASE MAINTENANCE .. 61

UPSIZING A FOXPRO DATABASE .. 61
Visual FoxPro Upsizing Wizard ... 61
Upsizing Considerations .. 64

DATA MANIPULATION LANGUAGE ... 66
CREATE TABLE ... 67
ALTER TABLE .. 67
CREATE INDEX .. 67
GENDBC.PRG .. 68

14. INDEX .. 69

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 5

2. Objectives

This Handbook aims to cover all the features required to implement client-server
database applications using Visual FoxPro as the front end. It is designed as a reference
text for experienced programmers and should be used in conjunction with the FoxPro
programmers' manual.

An experienced programmer with access to a client-server database should a few days to
work through the handbook and discover the implementation tricks and traps of client-
server development.

After reading this handbook you will have the knowledge to:

• Configure and optimise shared connections with the database server.

• Create and optimise remote parameterised views.

• Execute SQL pass through onto the database server both synchronously and
asynchronously.

• Upsize and modify database definitions on the server from FoxPro.

• Design and optimise a client-server application.

This book was originally written for Visual FoxPro 6.0 and has been updated and tested
fully with Visual FoxPro 7.0. The CursorAdapter class that is new with Visual FoxPro 8.0
is described in detail and some guidelines provided to help you chose which of the various
FoxPro technologies are relevant to your client server project.

All examples except for the CursorAdapter classes will work with
Visual FoxPro 6.0 and 7.0.

The second and third edition of the Handbook does not cover aspects specific to server-
side database issues. All sections are relevant whatever back end database you are
using. Please note that we advise you to load up enough test data to stress test your
application during the development phase as the performance aspects of client-server are
very different from native FoxPro databases.

REDWARE also publishes the SQL Server Handbook covering all
the essential aspects of implementing a database with Microsoft
SQL Server.

Please feed back any comments on the text of the book especially if there are any
important points or topics that you feel are missing from the book or any errors you have

uncovered. You may contact the author by email on stamati@redware.com.

Please look at our web site on www.redware.com for information on related products
and updates to this handbook.

Remember that this book is shareware and register your copy at
http://www.redware.com/register.html. You have a choice of making a small payment
or registering a link regarding the handbook from your website. Please recognise the
effort we have put into creating this resource and register now.

Register your shareware now at www.redware.com with either a
small payment or a link from you website.

http://www.redware.com/register.html
http://www.redware.com/

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 6

3. Tutorial

This tutorial section introduces client-server database programming with Visual FoxPro
with a minimum of fuss and bother. We explore the major concepts and get to know our
way around the PUBS database that ships with SQL Server.

First let us get to grips with some concepts:

• FoxPro uses the Windows ODBC drivers to communicate with the client-server
database. You will need to install the appropriate driver on each workstation.

• Remote Views can be created in a database container to reference a client server
database query. The retrieved data is represented as a FoxPro cursor.

• Cursors can now (since Visual FoxPro 8.0) be created with the object oriented
CursorAdapter base class.

• Cursors employ table buffering to control the timing of updates sent to the
database server.

• Direct communication with the database server is possible using SQL pass
through commands.

Create a Connection

A connection can be created with reference to an ODBC datasource defined on the
workstation or directly using a connection string. The following example connects to the
PUBS database on a locally installed copy of SQL Server using the system administrator
username and password.

lnHandle = SQLSTRINGCONNECT(;

 'DRIVER=SQL Server;SERVER=(local);UID=sa;PWD=;DATABASE=pubs')

The SQLSTRINGCONNECT function will return a positive integer referring to the connection

handle if successful. Incorrect passwords will usually result in a user prompt while other
errors will be trapped by the AERROR function.

Alternatively, if you have defined an ODBC driver for the workstation you may access the
datasource definition directly with the SQLCONNECT command:

lnHandle = SQLCONNECT('dsnPubs','sa','')

You can test a connection by using SQLTABLES to get a list of the defined tables returned

from the database server into a cursor. The PUBS database should contains several
tables including AUTHORS and PUBLISHERS.

? SQLTABLES(lnHandle,'table')

BROWSE

We can also execute database commands directly against the database server. The
following command will return a read-only copy of the AUTHORS table into a local cursor
called fred:

? SQLEXEC(lnHandle, 'select * from authors', 'fred')

SQLEXEC returns a 1 if completed successfully, 0 if still processing asynchronously, and –

1 if there is an error.

Create a Remote View

A remote view can be created programmatically but requires a database container to be
open for update. Most valid SQL SELECT clauses can be used to define a remote view.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 7

CREATE DATABASE dbctutorial

CREATE CONNECTION conpubs ;

 CONNSTRING 'DRIVER=SQL Server;SERVER=(local);UID=sa;PWD=;DATABASE=pubs'

CREATE SQL VIEW vueauthor REMOTE ;

 CONNECTION conpubs SHARED AS select * from authors

SELECT 0

USE dbctutorial!vueauthor

BROWSE

Updating Data

The default definition for a remote view is to create read only data. We must change the
view definition by setting the SENDUPDATES parameter to true either in code as shown

below or by using the database designer:

? DBSETPROP('vueauthor',"VIEW","SENDUPDATES",.t.)

Now we can browse and alter data. Notice the error messages from the server if you
attempt to set an illegal value (for example by entering letters into the ZIP field).

USE dbctutorial!vueauthor

BROWSE

Table Buffering

Table buffering can be useful if you want to update several records in a cursor and control
the moment they are updated onto the database. Table buffering is set on an already
open cursor using the CURSORSETPROP function below:

SELECT vueauthor

? CURSORSETPROP("Buffering",5)

You can now make any changes you require without sending anything to the server. You
can cancel all the changes as shown below:

REPLACE ALL au_fname WITH 'fred'

? TABLEREVERT(.t.)

Or you use the TABLEUPDATE function to update onto the database server:

? TABLEUPDATE(.t., .t.)

Using Parameterised Remote Views

One of the primary design criteria for a scalable client-server application is that only small
amounts of data are sent to the workstation at any one time. Parameterised Views allow
FoxPro variables to be defined as part of the selection clause so that only the required
records are retrieved.

In the example below, a parameterised view is created on the authors table that retrieves
only the authors that live in a single state:

MODIFY DATABASE dbctutorial

CREATE SQL VIEW vuestateauthors REMOTE CONNECTION conpubs SHARE as

select * from authors where state = ?lcstate

? DBSETPROP('vuestateauthors','view','sendupdates',.t.)

The parameterised view is first opened with the NODATA clause so that no data is
retrieved from the server. The required value for the State is specified in the appropriate
variable and selecting the empty cursor and issuing a REQUERY() command will
interrogate the server and retrieve only the required records.

USE vuestateauthors NODATA

lcstate ='CA'

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 8

REQUERY()

lcstate ='TX'

REQUERY()

Executing a Stored Procedure

Another great advantage of a client-server database is that programs, known as stored
procedures, can be defined to run on the server minimising the traffic passing to and fro
between server and workstation.

The following example shows how to call the BYROYALTY stored procedure which
returns a cursor of author identifiers who receive a particular percentage royalty:

OPEN DATABASE dbctutorial

lnhandle = SQLCONNECT('conpubs')

? SQLEXEC(lnhandle,'exec byroyalty 40','fred')

Creating a client server Form

FoxPro forms behave in a similar fashion with client-server remote views as they do with
local views and local tables. Care is required to manage the retrieval of the data and
updating using table buffering but, otherwise, the behaviours of the cursor is the same in
all three environments.

We shall create a form that prompts the user to enter the state required and then
retrieves the corresponding authors into a grid for updating. The VUESTATEAUTHORS
parameterised view is employed for this form, which will operate with record level
buffering on the cursor.

First create the form and right click to add the VUESTATEAUTHORS remote view into the
data environment. Select the properties for the cursor and set the NODATAONLOAD

property to true so that no data is retrieved from the server when the form is opened. Also
specify the BUFFERMODEOVERRIDE property to 3 for record level buffering.

Now drag the image of the cursor from the data environment onto the form to create a
grid control.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 9

Finally, create a textbox control that allows for a two character string to be entered for the
user to specify the state required and add the following code the refresh the
parameterised view and the grid:

lcstate = THIS.Value

SELECT vuestateauthors

=REQUERY()

THIS.Parent.GRdVuestateauthors.Refresh

Run the form and enter CA into the textbox. The grid should refresh and allow you to
update the author records. Try entering an invalid zip code to check that a response is
returned from the server as you move to the next record in the grid.

Create a Cursor with the CursorAdapter Object

CursorAdapter classes are the new object oriented way to access both local and remote
client server databases as well as access data using ADO RecordSets and XML.

An easy way to build a CursorAdapter object directly into a form is to create a new form
and richt-click to view the data environment. Ignore the initial prompt for a table and right-
click to add a CursorAdapter. Right-click on the newly added CursorAdapter and select
the builder.

Name the alias and select the ODBC datasource type and define the connection
characteristics. An existing workstation datasource is used below and the password and
username specified.

Click the Data Access tab and enter the following SELECT command:

SELECT * FROM authors

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 10

Now press the BUILD button just above the select command to select the fields required

and automatically update the SCHEMA values. Select all the fields in the AUTHORS table:

Now select the AUTO-UPDATE tab to spacify the SENDUPDATES and AUTOUPDATE

check boxes and the updatable fields. Specify the AU_ID field as the primary key.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 11

The CursorAdapter object is now complete and will create a cursor that updates the table
on the client server database. Close the builder down and drag the fields onto the form to
create a form in the usual way.

Summary

We have covered most of the concepts involved in creating client-server applications with
Visual FoxPro in this short tutorial:

• A connection that uses the Windows ODBC/OLEDB middleware to communicate
with the client-server database must be defined before FoxPro can communicate
with the server.

• Once the connection has been made, commands can be executed directly
against the database server to retrieve data or to execute stored procedures.

• A Remote View can be defined in a Database Container to coordinate the
retrieval of data from the server into a local cursor. The SENDUPDATES property

must be set to allow updates back onto the server controlled by the table
buffering properties of the cursor.

• CursorAdapter objects offer an object oriented way of accessing data stored
locally or remotely or via ADO or XML with a single programmable object.
CursorAdapters can be defined with a builder tool and properties stored
persistantly in a Visual Class Library.

• Parameterised views are used to control the retrieval of small sets of data as
required by the application. The art of client-server application design is to break
up access to the data into small queries that will allow the application to scale
easily to hundreds of users.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 12

• Forms are created in a similar fashion to standard FoxPro data access with
attention required for the specification of parameterised views and to the control
of the table buffering.

The remainder of the handbook describes each of these areas in detail and offers
instruction in the fine tuning and optimisation of FoxPro access to database server.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 13

4. Connections

Visual FoxPro controls all communication with client-server databases by using a
software component called a connection.

All connections require the appropriate ODBC drivers to be installed on the local
workstation. A single application may communicate with several different client-server
databases by defining a connection for each datasource.

Connections can be defined in a Database Container for use together with FoxPro remote
views as a very convenient way to access data. They may also be defined
programmatically when used together with SQL statements that are passed directly
through to the server.

Many parameters influence the behaviour and performance of connection. Fox example,
synchronous connections are relatively easy to handle programmatically and will cause
the application to wait until all the data requested from the server has arrived.
Asynchronous connections allow access to data and continues receiving data from the
server in the background.

Client-server performance can be influenced by the number of connections open at any
one time. An application with many users should minimise the number of open
connections for each client. Visual FoxPro aids this by allowing remote views to be
controlled by a single shared connection.

This section looks all aspects of Connections defined programmatically or in a database
container together with properties and settings that can be used to improve performance
and control behaviour.

ODBC Open DataBase Connectivity

ODBC (Open DataBase Connectivity) is the Microsoft Windows middleware for
connecting to external data sources from Windows applications. It has proved very
successful, and many applications have direct support for ODBC including the Microsoft
Office product range.

ODBC terminology has changed several times over the last decade with OleDB and ADO
drivers providing better functionality and performance particularly with SQL Server. Non-
Microsoft database vendors usually support ODBC for their drivers and the latest drivers
for SQL Server operate as ODBC drivers even if their underlying functionality is the more
recent ADO.

The ODBC drivers need to be installed on each workstation that requires access to the
data source and will work with all supporting applications once they are installed. Specific
drivers are not required for Visual FoxPro.

You may wish to access FoxPro data from other Windows
applications. The FoxPro ODBC driver can be download from the
Microsoft website. Just search for ' FoxPro ODBC driver'.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 14

ODBC String Connection

A full ODBC connection string can be used to create a connection to the server. In this
case there is no need to define a datasource on the workstation as only the relevant
drivers need to be installed.

This string may contain references to the driver, server, username, password, calling
application, workstation name, and database name to create a connection to SQL Server
for example:

DRIVER=SQL Server;SERVER=(local);UID=sa;PWD=;APP=Microsoft(R)

Windows NT(TM) Operating System;WSID=REDNTS001;DATABASE=pubs

The connection string may also be used in connection with a datasource that has been
defined on the workstation:

DSN=odbpubs;uid=stamati;pwd=fred

The SQLSTRINGCONNECT function can be used to test the connection from FoxPro and

should return a positive number greater than zero if sucessfully connected to the
database server. Use AERROR to resolve any problems.

lcSQL = [DRIVER=SQL

Server;SERVER=(local);UID=sa;PWD=;APP=Microsoft(R) Windows NT(TM)

Operating System;WSID=REDNTS001;DATABASE=pubs]

LnHandle = SQLSTRINGCONNECT(lcSQL)

ODBC Data Source Administrator

An ODBC datasource may be defined on a workstation using the control panel application
to provide consistent details to any application running on the workstation. The
datasource can include username and password information as well as the default
database to use.

The datasource can be one of three types:

• User DSN is available only to the current workstation user.

• System DSN is the most commonly used option and is available to all applications
and users on the workstation.

• File DSN is rarely used but has the advantage that it can be installed easily by
copying a file into the relevant folder.

The author has had trouble configuring File DSNs to work with
FoxPro.

Some points to note when installing an ODBC datasource for SQL Server:

• Storing the username and password in the datasource allows any user on the
workstation to access the database. Consider omitting the username and
password and providing the information within the FoxPro connection.

• Specify the (local)server when referring to the locally installed copy of SQL

Server

• Authentication is more straightforward from the application programmers point of
view when using SQL Server security instead of Microsot Authentication. The
username and password can reflect the permissions of the application rather than
that of the individual user.

• Take care when using the system administrator (sa) password. Preferably ask the
database administrator to give you a development username and password.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 15

• Try to set the default database in the datasource to avoid accidentally creating
items in the wrong database.

• Test the connection every time.

Specifying an ODBC Driver for a SQL Database

Test the ODBC connection from FoxPro using the SQLCONNECT command. The function

should return a positive number greater than zero. Use AERROR to determine any

problems:

lnHandle = SQLCONNECT('dsnPubs','sa','')

ODBC Performance Tips

ODBC is the middleware that connects Visual FoxPro to the server. The performance of
the ODBC driver will significantly affect client-server performance. Always use the latest
drivers as more recent drivers may offer enhanced performance.

The latest SQL Server drivers from Microsoft use ADO technology and offer a high level
of performance which more than matches the DB-LIB library that has traditionally been
used with SQL Server and Sybase implementations.

It may be worthwhile looking at third party suppliers of ODBC middleware for non-
Microsoft databases. Note that performance may be significantly faster when connected
to SQL Server in comparison with non-Microsoft databases such as Oracle and Sybase.

In rare instances the use of a specific library or DLLs or ADO ActiveX controls may
provide faster access to data. Connecting to a database with ODBC is usually the
preferred method for FoxPro, but you may need to look at these options for specific
requirements.

Connection Pooling will improve performance in applications, such
as a COM server where connections are being rapidly created and
destroyed.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 16

Connection Designer

An easy way to modify connection properties is to use the Project Manager to open the
required database container. Once the database container is opened the following
command may also be used to modify the connection:

OPEN DATABASE dbcNwind

MODIFY CONNECTION conNwind

The Connection designer is also available from the DATABASE menu of an open database

container or by right clicking on the background.

Modifying Connection Properties with the Database Designer

Data Source

The Connection designer allows an existing ODBC datasource to be used or for the full
connection string to be entered. The full connection string has the advantage that only the
required driver needs to be installed on the workstation.

SQL Server can be configured for integrated security and will
automatically sense the login permissions on the database from
the currently active NT login.

Data Processing Options

The defaults shown in the connection properties window above are fine for most
requirements:

• Synchronous execution is the best option when beginning to work with client-
server systems so leave the ASYNCHRONOUS checkbox empty. FoxPro will wait

for all the required data to be retrieved before continuing with processing.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 17

• Displaying the warnings will display any ODBC authentication issues to the user.
The alternative is to trap and display the errors under program control (using the
AERROR function).

• Leave batch processing and the automatic transactions set to True to allow
FoxPro to automatically handle the commit and rollback activity on the database.

TimeOut Intervals

Various timeout intervals can be defined for a Connection to help prevent problems with
runaway queries. These can normally be left on the default values.

In a development environment or with user defined selection criteria you may find that the
server takes a long time to return a query (even if the connection is asynchronous). In this
context it is advisable to set the Query timeout so that control returns to the workstation
for a runaway query (which is eventually cancelled on the server).

CREATE CONNECTION

Connections can be defined programmatically in a Database Container with the CREATE
CONNECTION command. In this case a Database Container must be open for
modification.

CREATE CONNECTION [ConnectionName | ?]

 [DATASOURCE cDataSourceName]

 [USERID cUserID] [PASSWORD cPassWord]

 [DATABASE cDatabaseName]

 | CONNSTRING cConnectionString]

The following example creates a connection in the SALES database container using a
datasource that has already been defined on the workstation:

SET DATABASE TO sales

CREATE CONNECTION conNwind DATASOURCE odbNwind

Alternatively the full connection string can be used:

CREATE CONNECTION conpubs ;

 CONNSTRING 'DRIVER=SQL Server;SERVER=(local);UID=sa;PWD=;DATABASE=pubs'

All the properties for a Connection object can also be set programmatically into the
Database Container with the DBSETPROP command. For example, the username could

be changed with the following command:

? DBSETPROP('conpubs','connection','userid','fred')

Programming Connections

Connections can be created programmatically with the SQLCONNECT or the

SQLSTRINGCONNECT command depending on whether an ODBC connection is created

on the workstation or a full connection string is used.

Both function returns a connection handle as a positive integer greater than zero if a
connection is made sucessfully. Problems can be resolvved with the AERROR comand.

lnHandle = SQLCONNECT('dsnpubs', 'sa', '')

Connection Properties

Some of the advanced properties can be set programmatically or with the Connection
Designer and are described below:

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 18

• The BATCHMODE is used for multiple SQL pass through queries with a single

command. Each query can be returned simultaneously in batch mode or one by
one.

• DISPLOGIN allows the system to prompt for the user password each time the

connection is used.

• The CONNECTBUSY property is read-only but is useful for determining whether an

existing query is active.

• The PACKETSIZE defaults at 4096 (4K) and may be changed if the multiples of

the record size are significantly smaller or larger than the default.

• TRANSACTIONS may be set to manual and SQLCOMMIT and SQLROLLBACK used

to update the server. A simpler approach might be to set the buffering on the
cursor to table level and control server updates programmatically.

For very sophisticated access, the ODBC handle may be determined with a connection
property and the ODBC driver interrogated directly with low level operating system calls.

The connection handle used for the current cursor can be
determined with the CURSORGETPROP() function by looking at
the CONNECTHANDLE property. The SQLSETPROP() function
can then be used to change connection properties before a
subsequent requery.

Setting Defaults

Default values for some of the options discussed above may be set for the FoxPro
environment in the Remote Data tab of the Options window which is available from the
FoxPro Tools menu.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 19

Remote Data Options Window

Default options for Connections may be specified programmatically using the
SQLSETPROP function with a zero Connection handle. To default all Connections to

asynchronous processing the following code is required:

SQLSETPROP(0, 'asynchronous', .T.)

Similarly the default cursor properties may be set by using the CURSORSETPROP

command with a zero workarea. To set the default buffering to table level buffering for all
cursors use the following syntax:

CURSORSETPROP('buffering', 5, 0)

Asynchronous Connections

Asynchronous processing is an important property of a Connection in that control is
returned to the application while a query is still running. The number of records to fetch
from the server at any one time is specified for each remote view and the application will
continue running once the first set of records has been returned. The remaining records
are retrieved in the background.

The default number of records to retrieve is 100 and is determined by the FETCHSIZE

property of the view. Using a view that has 10,000 records to be retrieved from the server
may take some minutes with a synchronous connection. An asynchronous connection will
retrieve the first 100 records and then return control to the application.

The following command will set up a Connection for ASYNCHRONOUS queries so that

program control will return whilst the cursor is being populated with data returned from the
server. You may need to execute the second SQLEXEC several times before the data

begins to be retrieved. A zero indicates that data is being retrieved or that FoxPro is
waiting for the first results. A negative value is an error and a 1 indicates that all the data
has been retrieved:

lnHandle = SQLCONNECT('dsnDataSource','sa','')

SQLSETPROP(lnHandle,"Asynchronous",.T.)

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 20

? SQLEXEC(lnHandle, [SELECT * FROM largeTable])

? SQLEXEC(lnHandle, '')

Retrieving more records is performed automatically in the background but is forced to
operate immediately by issuing a GO command, for example GO 1000, to force FoxPro to
retrieve the first 1,000 records or a GO BOTTOM to force FoxPro to retrieve all the
records synchronously. Be careful when issuing this type of command when a large
amount of data is being retrieved.

ASYNCHRONOUS queries can cause problems when a Connection

is being used for accessing several tables. Use the CONNECTBUSY

property and the SQLCANCEL functions to control the connection.

In general SYNCHRONOUS connections are easier to handle and

you should filter the query to an acceptable number of records.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 21

5. Remote Views

Remote Views are stored in a Database Container and allow client server data to be
retrieved and updated as if the table was a local FoxPro table. Views can also be defined
to refer to local FoxPro tables to provide code compatability for systems that access local
or remote data according to the installation (a separate Database Container is defined for
each configuration).

Remote Views allow for transparent access to external ODBC data and also maintain
some degree of logical data independence from the physical definition of the underlying
data. Various components are required to create remote views successfully:

• An ODBC driver must be installed on the workstation to act as the middleware
linking the operating system to the database server.

• A Connection is defined in the Database Container or programmatically to refer to
the ODBC datasource.

• A Remote View is defined in a Database Container using the View Designer.

Views are created in a Database Container using the View Designer. This allows the
required tables to be selected and any join conditions specified between them. The
required fields, selection condition, order sequence, and update criteria are also specified.
Local Views can access data from local tables whilst Remote Views use ODBC to
connect to a database server.

Triggers cannot be defined for a View.

View Designer

The View Designer allows for the visual definition of the SQL statement that makes up the
View. The tables that make up the View, the available fields, and the selection criteria are
all defined visually along with the ability to group the table and calculate summary
information.

Various field and view properties can be set with the view designer or by using the
DBSETPROP command. For example, the RULEEXPRESSION property of the View

provides table level validation for the view regardless of the data source but cannot be set
using the View Designer.

Creating a Remote View

Tables are added to the View by Rightclicking in the View Designer and selecting the Add
table option. If more than one table is added, the system will prompt for the fields that
define the relationship to be specified and add them into the FILTER expression as shown
below.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 22

Adding tables with the View Designer

FoxPro uses a filter to create the join between tables. The JOIN
Page must be used when inner and outer joins need to be
specified.

Fields

The fields must be selected using the FIELDS tab of the designer. It is advisable to limit
the fields selected so as to reduce the traffic of data passing across the network. The
primary keys will need to be included for the view to be updateable.

The FIELDS Page has a PROPERTIES button which allows field properties to be set on

the view and stored in the FoxPro database container. Most of these properties are better
set in the server database management system and are enforced for all client
applications.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 23

Field Properties Window

The Data Mapping will usually default to the field type most appropriate for FoxPro to
receive values from the ODBC data source. Occasionally this may need to be modified
and the View Designer allows the FoxPro data type to be modified to match particular
processing requirements.

SQL Server does not have a date field as all dates are stored as
date and time values. In this case it may be appropriate to change
the mapping to a date datatype.

Filter

The Filter window may be used to create a selection of records from the table. A
parameterised view can be created by specifying a local FoxPro variable as part of the
selection filter. In this case prefix the variable name with a question mark as shown below.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 24

Specifying a Filter

Join

FoxPro uses the filter expressions to define the join condition whenever a new table is
added to the view. This creates a Natural or Inner Join where only records that appear in
both tables are selected.

Occasionally a more sophisticated Join is required where all the records of a table are
displayed even if there are no records in the related table. This is called an Outer Join.

Authors may not have any records in the titleauthor table for example. A view that shows
data from both tables and requires all Authors records even if there are no entries in the
titleauthor table requires a Left Outer Join between the two tables. This is achieved by
removing the expression from the Fields Page and including it on the Join Page specifying
that a Left Outer Join is required.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 25

Specifying a Left Outer Join

Order By

The Order By Page passes the sequence required onto the Server which returns the
results set in the required order.

Take care when requesting large results sets that the order by is
optimised on the server. In some cases it is more efficient to index
the remote view locally after the view is opened.

Group By

The Group By window is used to make the grouping selection operate on aggregate
fields. These are specified using the Functions and Expressions item on the Fields Page
using the appropriate SQL aggregate clause.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 26

Specifying an Aggregate Clause

The field name assigned to the aggregate field normally defaults
to EXP. This can be changed by modifying the fieldname with the
AS keyword following the expression in the View Designer.

The SQL-92 standard requires that all fields that are not modified with an aggregation
function must be included in the Group By. In the above example, which displays the
Author ID, Title ID, and the sum of the Sales Quantity, both the Author ID and the Title ID
must be in the Group By. Visual FoxPro is not as strict as the SQL Server ODBC in this
respect.

The HAVING clause does not seem to be implemented in the View

Designer but can be implemented using DBSETPROP to specify

the SQL property.

Update Criteria

The Update criteria specify how the data in a view is updated back onto the remote data
source.

The Update Criteria can substantially affect the performance of the Remote View, and
consideration of the nature and performance of the back end database is required to fully
optimise the Remote View together with the Connection definition.

A primary key must be specified for FoxPro to determine which record to update in the
external data source. Visual FoxPro may be able to determine the key field automatically
but it can also be specified manually by clicking beside the appropriate field in the column
indicated with a Key icon.

The fields that are modifiable by the program or end-user can also be specified for
security and performance purposes by checking the column with a pencil icon.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 27

Specifying the Update Criteria with the View Designer

A remote view can be specified on a join of several tables. The
Key fields for each table should be indicated with the view
designer to make all the tables updateable.

There are several optimistic record locking strategies that can be employed with a remote
view.

• One scenario is that FoxPro can check the values of the key fields and all
updateable fields to see if any changes have been made to any of the updateable
fields by another user whilst the user was editing the record on the workstation. If
any changes have been made by another user, the update transaction fails.

• Alternatively, the View can be configured to update the table by matching the key
fields only. The update still occurs overwriting their changes if another user has
made changes to the record.

• A timestamp field can be defined in the external data source (for SQL Server
tables) which is maintained automatically each time the record is updated. Visual
FoxPro can then check the timestamp field to see if other users have updated
any of the fields in the record.

• The Key and Modified Fields option may be specified so that the remote view
checks only the Primary Key and any fields that have been changed by the user.
This allows several users to change the same record simultaneously as long as
they do not update the same field.

The Key and Modified Fields option works well and is a good initial
choice for an optimistic record locking strategy.

The TABLEUPDAT) command has a FORCE parameter which will

perform the update regardless of any changes made by another
user.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 28

Some database engines do not allow SQL UPDATE commands on records and the
record must be deleted and reinserted. This is allowed by checking the appropriate option.

Parameterised Views

Parameters may be defined for a View to limit the data selected in the SQL SELECT
statement. The parameter can be employed programmatically and interactively.

The parameter is specified in the View Designer by placing a question mark before the
parameter name in the EXAMPLE column of the selection criteria.

Specifying a Parameterised View

The end-user is automatically prompted to enter the parameterised value unless a
memory variable with the same name as the parameter is defined before opening the
View.

Take care to include a numeric string in quotes when prompted for
a value.

m.lc_surname = 'B%'

USE authorsurnameview IN 0

BROWSE

The parameter can easily be changed and the remote view updated with the REQUERY)

syntax:

m.lc_surname = 'D%'

REQUERY(‘authorsurnameview’)

Parameter names can be defined for interactive use by enclosing
the name in Quotation marks. For example: ?'Please enter the
Customer Identifier'

CREATE SQL VIEW

Views can be created programmatically in the Database Container by defining the SQL
SELECT statement with the following syntax:

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 29

CREATE SQL VIEW [ViewName] [REMOTE]

 [CONNECTION ConnectionName [SHARE]

 | CONNECTION DataSourceName]

 [AS SQLSELECTStatement]

A remote view must have the REMOTE keyword added and the connection details
specified:

SET DATABASE TO dbcpubs

CREATE SQL VIEW authorsurnameview ;

 REMOTE CONNECTION odbpubs SHARED AS ;

 SELECT * FROM authors WHERE au_lname LIKE ?lc_surname

More complex views are also possible. A local view that contains the total value of each
Product ordered by a single Customer might be defined as follows:

SET DATABASE TO sales

CREATE VIEW ProductTotal AS ;

 SELECT Products.product_id, Products.prod_name,

 SUM(Orditems.quantity),;

 SUM(orditems.unit_price*Orditems.quantity);

 FROM testdata!orditems, testdata!products;

 WHERE Products.product_id = Orditems.product_id;

 GROUP BY Products.product_id;

 ORDER BY Products.prod_name, Products.product_id

The View may not be updateable if certain properties are not set.
The SENDUPDATES property, for example defaults to False

resulting in a read-only cursor.

View Properties

Properties can be set for all of the objects in a Database Container including Tables,
Views, Remote Views, and Connections. For many of the objects in the database
container, the properties can be set both interactively using the appropriate designer or
programmatically.

DBSETPROP is used to programmatically set database container properties. The function

returns a True value if the property is successfully set in the Database Container. The
following syntax can be used to set a Caption on a field in a Remote View specified in the
Orders Database Container:

SET DATABASE TO orders

? DBSETPROP('customertotal.cnt_id', 'field', ;

 'caption', 'Orders')

The following example sets the validation rule property for the view to call a validation
function. This property cannot be seen or be set with the view designer:

SET DATABASE TO orders

? DBSETPROP('customertotal', 'view', ;

 'ruleexpression', 'custval()')

See the help for DBGETPROP() for a list of the property names
that can be set in the database container. Take care because
Visual FoxPro does not check the validity of Database Container
properties when validation rules are set programmatically.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 30

Shared Connections

Database servers are often licensed per active connection or may have a performance
bottleneck if too many connections are used. Reductions in the number of connections
per user, preferably to one, will reduce server bottlenecks and/or cost.

A FoxPro connection can be shared for several queries. This is straightforward for
synchronous queries but may cause some problems with busy connections for
asynchronous queries.

FoxPro allows for Connections to be shared by specifying the SHARED keyword when

defining a Remote View in program code or by selecting the Advanced Options when
defining a View. Alternatively DBSETPROP can be used to set the SHARECONNECTION

property to True.

The server may soon run out of connections with a very small
number of users if this option is not used as the default for remote
views.

Update Criteria

The update criteria specified for a remote view can affect performance.

FoxPro will retrieve the record from the server to check if another user has changed any
of the data on the updated record. The amount of data returned from the server depends
on whether the key only, modified fields only, or all modified fields is checked. In a high
transaction situation, the fastest option is the one that retrieves the least data from the
server. In this case, checking only the primary key value will reduce network traffic at the
cost of potentially overwriting another users changes. Note SQL Server allows the
creation of a Timestamp field to control the resolution of these update conflicts with the
minimum of traffic.

The update criteria correspond to the following properties which may be set in the view
designer or by using DBSETPROP:

• SENDUPDATES – must be true for any updates to occur.

• UPDATETYPE – update in place or delete and insert.

• WHERETYPE – key and modified fields etc.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 31

Working with Remote Views
USE [[DatabaseName.]Table | SQLViewName | ?]

 [IN nWorkArea | cTableAlias]

 [ONLINE]

 [ADMIN]

 [AGAIN]

 [NOREQUERY [nDataSessionNumber]]

 [NODATA]

 [INDEX IndexFileList | ?

 [ORDER [nIndexNumber | IDXFileName

 | [TAG] TagName [OF CDXFileName]

 [ASCENDING | DESCENDING]]]]

 [ALIAS cTableAlias]

 [EXCLUSIVE]

 [SHARED]

 [NOUPDATE]

A View may be defined in the Database Container that operates on a external data
source. The View might be opened using the USE…NODATA command for implementation

of a data entry function that only requires the addition of new records. This saves on
server performance because no records are retrieved from the server.

In some instances the View may have already been opened by another program function.
The open view can be used in the current form without executing the query again with the
NOREQUERY clause of the use command:

USE remotecustomer ALIAS remotecustomer02 AGAIN NOREQUERY 5

The datasession where the remote view was originally opened
can be specified in the NOREQUERY clause.

Alternatively the NODATA clause might be used to open a Remote Cursor without bringing

down any records. This would be appropriate for a data window that is used only to add
new records for example:

USE remotecustomer NODATA

Parameterised Views

A parameterised View will bring only the selected records down from the server.
Minimising the number of records will reduce network traffic and improve performance.
This is probably the single most important consideration when designing client-server
applications.

A parameterised view can be defined in the View Designer or in program code. The
following example creates a connection and a remote view in the database container:

OPEN DATABASE dbcPubs EXCLUSIVE

CREATE CONNECTION conPubs DATASOURCE odbPubs

CREATE SQL VIEW authorscontractview ;

 REMOTE CONNECTION conPubs SHARE AS ;

 SELECT * FROM authors WHERE contract = ?m.ll_Contract

This View is set up with all the current defaults. As the View is created, FoxPro will
interrogate the server and determine the names of all the fields and of the primary keys.
All fields apart from the primary key are set updateable by default and the update criteria
are set according to the View defaults.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 32

If the View properties are not setup correctly the view will not be updateable. For example
the SENDUPDATES property must be True for the view to be updateable.

The parameterised View might initially be opened with the NODATA clause and then the

value set for the parameterised query and the REQUERY command used to bring down the

recordset from the server:

USE authorscontractview NODATA

….

m.ll_Contract = .T.

= REQUERY('authorscontractview')

In this particular example, the Contract field is stored as a bit field on the server with
values 0 and 1 instead of .T. and .F. FoxPro will automatically translate to the required
value although the server values are also valid and 0 and 1 may be used as a value for
the parameter.

The PREPARED property of a parameterised view can improve
performance when requerying complex select statements by
preparing (compiling) the statement on the server.

Each Cursor in the data environment of a form has a
NODATAONLOAD option which can be used to open the table
without any data. This is useful for forms which only add new
records or where a parameterised query is required but the user
has not yet specified the selection criteria.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 33

6. CursorAdapter Class

The CursorAdapter class is new for Visual FoxPro 8.0 and provides an object-oriented
base class for creating cursors that control access to data.

CursorAdapters work well with various different data sources:

• Data stored in native FoxPro format on your local disk drive or local area network
servers.

• Client-server data stored in a central database management system accessed
using ODBC drivers.

• ADO recordsets created on the workstation or by a middle tier business
component server.

• XML documents.

CursorAdapters can be created programmatically or using the CursorAdapter builder that
forms part of the visual design tools for the DataEnvironment of a Form. Third party tools
such as the cabuilder from www.mctweedle.com build CursorAdapter class libraries
directly from existing local or remote databases.

There are several advantages of using CursorAdapter classes:

• Object oriented inheritance allows a base class to be defined with application
specific properties and methods.

• CursorAdapters are suitable for implementing systems that need to operate with
either local or remote data according to the installation.

• CursorAdapter definitions can be created and stored in a visual class library and
can be added into a DataEnvironment for a Form in a similar manner to local
tables or views defined in a database container.

Some disadvantages include:

• CursorAdapters are objects and the object variable needs to remain in scope for
the data to be available.

• Visual class libraries have a limit fo 255 characters for properties and these
properties often need to be defined in a method of the class.

• Views in the database container have additional properties for the individual fields
defined for the cursor.

• A cursor created by a CursorAdapter class is instatiated in program code instead
of with the USE command.

CursorAdapters combine many of the best qualities of views defined in a database
container with the flexibility of programmatic control and object oriented inheritance.
Storing CursorAdapter definitions within a Visual Class Library in combinations with the
builder tool allows visual design and persistance of the definitions (although this needs
some improvement). The main benefit however is a single object oriented technique for
accessing data from a variety of data sources including local tables, client-server tables,
ADO recordset objects and XML documents.

CursorAdapter

A CursorAdapter uses a connection to communicate with a client server database when
accessing data through with ODBC. A SQLCONNECT or SQLSTRINGCONNECT command

http://www.mctweedle.com/

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 34

is issued to get a connection handle and the DATASOURCETYPE and DATASOURCE

properties defined as shown below.

The SELECTCMD property is given a command that is executed on the server and a local

cursor is created from the server data when the CURSORFILL method is called.

lnHandle = SQLCONNECT('dsnpubs','sa','')

loPubs = CREATEOBJECT('cursoradapter')

loPubs.DATASOURCETYPE ='ODBC'

loPubs.DATASOURCE = lnHandle

lopubs.alias = 'caAuthors'

loPubs.SELECTCMD=[select * from authors]

IF loPubs.CURSORFILL()

 BROWSE

 ELSE

 ? 'Error'

ENDIF

This cursor will be closed as the program ends and the variable
holding a reference to the CursorAdapter goes out of scope.

 An identical procedure is followed for local FoxPro data where the DATASOURCE is blank

and the DATASOURCE type is set to 'NATIVE'.

Examples of CursorAdapter use with ADO and XML are shown
later in this document.

Using parameters to filter data

Accessing client server data without specifying a filter is expensive as all the data must be
retrieved from the server into a cursor on the local machine. A paramerised query may be
specified in the SELECTCMD property to specify a selection of data.

The following example shows a CursorAdapter object retrieving an empty cursor by
specifying the NODATA property when filling the cursor with the CURSORFILL command.

This adds a WHERE 1=2 clause onto the SELECT command and returns an empty

cursor with zero records.

lnHandle = SQLCONNECT('dsnpubs','sa','')

loPubs = CREATEOBJECT('cursoradapter')

loPubs.DATASOURCETYPE ='ODBC'

loPubs.DATASOURCE = lnHandle

loPubs.ALIAS = 'caAuthors'

loPubs.SELECTCMD=[select * from authors where state=?lcState]

IF loPubs.CURSORFILL(.F.,.T.)

 BROWSE TITLE 'NODATA'

ELSE

 ? 'Error'

ENDIF

An empty cursor might typically be created when initially running a form until the user can
be prompted for some selection criteria. At this stage the parameters can be set and the
CURSORFILL command reissued to populate the cursor as shown below. This process

can be repeated as often as required.

lcState = 'TX'

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 35

IF loPubs.CURSORFILL(.F.,.F.)

 BROWSE TITLE [state=TX]

ELSE

 ? 'Error'

ENDIF

The SELECTCMD property of the CursorAdapter can be updated as required. This

removes a major limitation of database container views in that a complex where clause
can be specified for a cursor at run time.

lcWhere = [WHERE state='CA' AND contract=1]

lcSQL = [SELECT * FROM authors] & lcWhere

loPubs.SELECTCMD = lcSQL

IF loPubs.CURSORFILL(.F.,.F.)

 BROWSE TITLE lcWhere

ELSE

 ? 'Error'

ENDIF

It seems that the SELECTCMD property for a CursorAdapter can contain any command

that can be executed against the server. The following example executes a paramerised
stored procedure on the server and returns the results as a cursor:

lnHandle = SQLCONNECT('dsnpubs','sa','')

loPubs = CREATEOBJECT('cursoradapter')

loPubs.DATASOURCETYPE ='ODBC'

loPubs.DATASOURCE = lnHandle

lopubs.alias = 'caRoyalty'

lnPerCent = 40

loPubs.SELECTCMD=[exec byroyalty ?lnPerCent]

IF loPubs.CURSORFILL()

 BROWSE

 ELSE

 ? 'Error'

ENDIF

Explain cursorschema here….

Updating data

The process for making a cursor updatable involves specifying properties to allow the
system to automatically generate commands to execute on the server to update the
changed records in the cursor.

The required properties are the same properties used to make a cursor created with SQL
passthrough updatable and are the same as those set against a cursor created by a
remote view:

• TABLES contains a list of the tables on the server to be updated.

• KEYFIELDLIST is a list of the fields that form the primary key of the tables.

• UPDATEABLEFIELDLIST is a list of the cursor fields that are updatable. Changes

to the remaining fields are ignored.

• UPDATENAMELIST is a translation from local cursor field names to the field

names on the server with the correct table prefix.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 36

The primary key fields must be specified in the
UPDATENAMELIST to allow the update commands to be
automatically created by the system. They do not need to be
updatable to update records or if the key values are automatically
generated on the server when adding a new record.

The following example allows updates to occurs only on the AU_LNAME and AU_FNAME

fields of the AUTHORS table:

Example here…

The ALLOWUPDATE, ALLOWINSERT, ALLOWDELETE and SENDUPDATES properties are

true as the default settings for each CursorAdapter object. These values can be changed
to restrict the apporpriate data modification operation.

The WHERETYPE property can also be set to specify the type of update command that is

applied when records are changed. A good default value to chose is to set Key and
Modified fields so that the system checks any modifed fielda for changes by other users
but allows two users to change the same record provided they change different fields.

UPDATETYPE by default notifies the system to automatically generate a single update

command to update records on the server. Change this setting to generate separate
DELETE and UPDATE commands if required by your database server.

CONVERSIONFUNC is an iteresting property allowing local field values to be converted with

a FoxPro function immediately prior to updating the data on the server. This is particularly
useful for data stored as variable length character strings on the server but recognised as
fixed length character strings in the local cursor. Specifiyng the RTRIM conversion

function for each required field ensures that spaces are added onto the end of the
character values in the server.

Example here…

Adding spaces onto variable length character fields may cause
unpredicatable results when selecting records from the server
which may now expect the correct number of trailing spaces when
comparing values.

FoxPro automatically generates the update commands for any changes in the local cursor
and controls their execution against the server system. This functionality works perfectly
for both local and remote client server tables using ODBC. Properties such as
UPDATECOMMAND, UPDATEDATASOURCE, and UPDATEDATASOURCETYPE allow detailed

specification of update, insert, or delete commands if required.

CursorAdapter Event Model

CursorAdapter cursors have an event model that allows methods to be defined before
and after major events such as filling a cursor or modifying or inserting data.

These events can be particularly useful for definging the equivalent of database validation
and triggers in an object oriented fashion. Although is it perhaps better to exncapsulate
this functionality on the database server, this approach might be useful if defining data
validation rules on the client where a variety of database servers are used some of which
may not allow data constraints or triggers to be specified.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 37

The following code specifies a an updatable CursorAdapter class programmetically and
then saves the object into a Visual Class Library.

lnHandle = SQLCONNECT('dsnpubs','sa','')

loPubs = CREATEOBJECT('cursoradapter')

loPubs.DATASOURCETYPE ='ODBC'

loPubs.DATASOURCE = lnHandle

loPubs.ALIAS = 'caAuthors'

loPubs.SELECTCMD=[select * from authors where state=?lcState]

lcState = 'TX'

IF NOT loPubs.CURSORFILL()

 ? 'Error'

ENDIF

loPubs.TABLES='authors'

loPubs.KEYFIELDLIST='au_id'

loPubs.UPDATABLEFIELDLIST='au_lname,au_fname'

* Primary key must be defined in updatenamelist

loPubs.UPDATENAMELIST = 'au_id authors.au_id, au_lname

authors.au_lname, au_fname authors.au_fname'

loPubs.SAVEASCLASS('ca07','cauthors','authorsw - only fname and

lname updatable')

The CursorAdapter object can subsequently be opened using the following code. Note the
use of the AUTOPEN method instead of CURSORFILL. The method simply fills the cursor

but is the method used by a Form DataEnvironment to open a CursorAdapter.

SET CLASSLIB TO ca07

lcState = 'TX'

loAuthors = CREATEOBJECT('cauthors')

loAuthors.AUTOOPEN

loAuthors.BUFFERMODEOVERRIDE= 3

BROWSE

? TABLEUPDATE(.t.,.t.)

A validation rule can easily be defined by modifying the BEFOREUPDATE event method.

The DODEFAULT command is issued to continue with the update or not if the current

record transgresses the validation rule. The following example prevents BILL being
entered as an author's first name:

* BEFOREUPDATE

LPARAMETERS cFldState, lForce, nUpdateType, cUpdateInsertCmd,

cDeleteCmd

* Do not allow update if firstname is bill

LOCAL llFailUpdateRule

STORE .F. TO llFailUpdateRule

LOCAL lcFirstName

STORE SPACE(0) TO lcFirstName

LOCAL lcField

STORE SPACE(0) TO lcField

lcFirstName = EVALUATE(THIS.ALIAS+[.au_fname])

IF TYPE('lcFirstName')=='C'

 IF ALLTRIM(UPPER(lcFirstName))= 'BILL'

 llFailUpdateRule = .T.

 WAIT WINDOW 'Sorry. You cannot have BILL as the first name.'

 ENDIF

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 38

ENDIF

IF llFailUpdateRule

 RETURN .F.

ELSE

 RETURN DODEFAULT(cFldState, lForce, nUpdateType,

cUpdateInsertCmd, cDeleteCmd)

ENDIF

The BREAKONERROR property defaults to allowing a

CursorAdapter class to trap its own errors within an ERROR

method. Set this property to FALSE to allow standard errors to be

generated if there is a problem with your code.

Attaching an Existing Cursor

An existing cursor can be attached to a CursorAdapter object and the properties of the
object manipulated as required. The following example shows a read-only cursor created
with SQL pass-through attached to a CursorAdapter with the CURSORATTACH method and

then specified as an updatable cursor.

lnHandle = SQLCONNECT('dsnpubs','sa','')

lnExec = SQLEXEC(lnHandle, ;

 [SELECT * FROM authors],'sptAuthors')

loPubs = CREATEOBJECT('cursoradapter')

loPubs.CURSORATTACH('sptAuthors')

loPubs.DATASOURCETYPE ='ODBC'

loPubs.DATASOURCE = lnHandle

lopubs.Tables='authors'

lopubs.KeyFieldList='au_id'

lopubs.UpdatableFieldList='au_lname,au_fname'

* Primary key must be defined in updatenamelist

lopubs.UpdateNameList = 'au_id authors.au_id, au_lname

authors.au_lname, au_fname authors.au_fname'

The CURSORDETACH method is used to detach a cursor from the CursorAdapter object.

The object reference can then go out of scope but the cursor remains in the environment
as a standard local cursor. The CursorAdapter properties will need to be specified again if
the cursor is subsequently attached to a CursorAdapter object.

Using the CursorAdapter Builder

Building a CursorAdapter with cabuilder.prg

Using CursorAdapter Objects in a Form

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 39

7. Data Buffering

Visual FoxPro creates a local cursor when creating a Local or Remote View. These
cursors can be defined to automatically update the original data when the record pointer is
changed or the cursor is closed. This process is called Data Buffering and may be
controlled in various ways.

This section describes data buffering and how it can be used to control server updates
and how error messages returned from the server may be processed.

Buffering may be specified at Record or Table level, or not at all. The locking of the
source table may be specified as Pessimistic or Optimistic:

• Record level buffering will automatically commit any changes to the record each
time the record pointer is moved.

• Table buffering will commit all changes and additions to the table when the table
or form is closed.

• Pessimistic locking will lock the record being edited on the “real” table.

• Optimistic locking does not lock the record until changes are committed but
double checks at this time to see if another user has changed the record.

Application design aims to minimise the time that records in the
tables are locked so as to maximise the throughput of data for a
larger number of users. Optimistic record locking is used wherever
possible throughout these notes.

Record buffering can be enabled in a variety of ways:

• The BUFFERMODE property of the form can be set to specify Optimistic or

Pessimistic buffering.

• The BUFFERMODEOVERRIDE property can be set on an individual table in the

Data Environment to override the Form setting to any combination of Optimistic
and Pessimistic locking or Table and Record level buffering.

• The CURSORSETPROP function can be used to set the buffer mode on an

individual cursor.

Multilocks must be set on to enable buffering. Be careful to set this
inside a form if you are using private data sessions.

Specifying Data Buffering

The CURSORSETPROP() function may be used to enable buffering for the current table
or view cursor. To set record level buffering on the AuthorsView remote view for example:

USE pubs!authorsview

llOK = CURSORSETPROP('buffering', 3)

Record level buffering allows changes to be made to the current record which are sent to
the server only when the record pointer is moved or the TABLEUPATE() command is
issued.

Table level buffering allows changes to be made to the workstation copy of the data and
only sent to the server when the TABLEUPDATE() command is issued.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 40

USE pubs!authorsview

llOK = CURSORSETPROP('buffering', 5)

Buffering may also be manually set up on a cursor once it has been opened with the View
window by pressing the PROPERTIES button after selecting the view cursor workarea.

Setting Optimistic Record Level Buffering in the View Window

Some validation rules prevent APPEND BLANK from functioning correctly and being used

on a form button for example. This might occur where empty values were not permitted
for a field in the validation criteria but the program was not able to progress to the user
input stage until a value has been entered. Table buffering overcomes this limitation.

Both Field and Record Level database rules are checked each time the record pointer is
moved. FoxPro Triggers are only run when the data is committed into the database and
are not available on Local and Remote Views.

Saving Changes

The TABLEUPDATE function is used to update the table under program control. The

following command will write changes for the current record into the database with
buffering enabled:

TABLEUPDATE()

The command can accept parameters to update just the current record (the default), or
the whole table where table level buffering is specified. The cursor to be updated can also
be specified. All changes on all records of the TITLESVIEW cursor can be sent to the
server with the following command:

TABLEUPDATE(.T., .F., 'titlesview')

The function returns a True value if the data is committed and a False value if there is a
problem with the record level validation rule or any of the triggers. Field level validations
are also fired even if the fields have not been entered during an append procedure.

Record level buffering will display any update errors to the user attempting to move the
record pointer from a record that cannot be modified because of a server validation
problem. This message can be suppressed by using the TABLEUPDATE command to

update the record instead of relying on FoxPro.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 41

If an error occurs and any records are not updated on the server, the TABLEPDATE

function returns a False value. The errors returned from the server can be determined

with the AERROR command.

DIMENSION la_Error[1]

AERROR(la_Error)

DISPLAY MEMORY LIKE la_Error

See the section on error trapping later in this chapter for more
details on processing errors.

Reverting Changes

The TABLEREVERT function is used to abandon changes made to a buffered record or

table. The function will return the number of records in the workstation cursor that have
been reverted.

TABLEREVERT()

Normally TABLEREVERT will revert the current record if changes have been made. With

Table level buffering set and a parameter passed to the function, all the changes made on
the required cursor can be reverted:

TABLEREVERT(.T., 'titlesview')

Changed records cannot be reverted after a successful
TABLEUPDATE.

Determining Updates

The update status of each field can be determined with the GETFLDSTATE(fieldname)
function that returns the status of each field in the current record of a buffered cursor:

• 1 - No Changes.

• 2 - Field Updated.

• 3 - Field Added in a new record but not modified.

• 4 - Field Modified in a new record.

The GETFLDSTATE(-1) function is used to return the update status of the current

record where buffering has been enabled. The first character of the returned value
indicates the delete status of the current record and the remaining characters indicate
individual field status.

If the returned string contains only the character 1 then no changes have been made to
the current record. 2,3, or 4 indicates that a change has been made or the record added
or deleted. The following expression will check for changes to the current record in the
current buffered cursor:

LOCAL m.lc_getfld

m.lc_getfld = GETFLDSTATE(-1)

IF '2' $ m.lc_getfld ;

 OR '3' $ m.lc_getfld ;

 OR '4' $ m.lc_getfld

 * Changes have been made

 …

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 42

ENDIF

The SETFLDSTATE() function can be used to alter these
settings.

Only one record at a time is updated with Record Level Buffering. Several records are
changed on the local workstation cursor with table level buffering and in some cases it is
useful to determine which records have been changed before updating.

The GETNEXTMODIFIED function returns the next record number of the cursor that has

been modified on the workstation and not updated onto the server. The function requires
a parameter to indicate the record number to search from:

? GETNEXTMODIFIED(0) will return the first record that has been modified. If record 5 is

returned, the record number of the next modified record is obtained with the following
command:

? GETNEXTMODIFIED(5)

Records appended with table buffering have negative record
numbers.

Additional functions exist to help resolve update difficulties. The record pointer must be
positioned on the required record for these functions to work.

The current value in the local workstation cursor is determined by using the alias and field
name in the normal way. For the STORE_ID field in the SALESVIEW cursor for example:

m.lc_Local = salesview.store_id

The original value determined when the snapshot of the original data was copied onto the
workstation is determined by a function called OLDVAL().

m.lc_Snapshot = OLDVAL('store_id')

The current value on the server will be the same as the OLDVAL() unless the server data
has been changed by another user since the snapshot of the cursor data was taken. It
can be determined with the CURVAL() function:

m.lc_Server = CURVAL('store_id')

These three functions may be used in combination to check which fields have been
changed by the current user or another user and then use application logic to set values
that are acceptable to the server.

Error Handling

Many data validation and business rules can be implemented on the server. The server
will return an error to the application program if it is unable to process a transaction. The
ODBC standard requires that the front end programming language accepts multiple errors
from the server.

The AERROR function will capture these errors from the server and place them into the

specified array. This is usually required when a TABLEUPDATE() function returns a False
value. The following example traps for an error when the current record of the Salesview
cursor is updated onto the server:

m.lc_cursor = 'salesview'

IF NOT USED(m.lc_cursor)

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 43

 RETURN .F.

ENDIF

m.lc_getfld = GETFLDSTATE(-1, m.lc_cursor)

IF '2' $ m.lc_getfld ;

 OR '3' $ m.lc_getfld ;

 OR '4' $ m.lc_getfld

 * Changes have been made to current record

 IF NOT TABLEUPDATE(.F., .F., m.lc_cursor)

 IF AERROR(la_error) > 0

 * Errors in updating server

 …

 ENDIF

 ENDIF

ENDIF

If an error occurs, the corresponding records will not have been written to the database.
You may use the GETFLDSTATE, GETNEXTMODIFIED, and other options to change the

local data and resubmit using a TABLEUPDATE. Alternatively, use TABLEREVERT to

cancel the change for a single record or for all changed records.

The array created by AERROR contains the FoxPro error number as well as the server

generated error numbers and messages. The server error may need to be parsed in order
to be processed correctly.

One common error with optimistic data buffering is that another user will have changed
the same record from another workstation. The TABLEUPDATE will fail and will return

error 1585 into the error array.

 * Changes have been made to current record

 IF NOT TABLEUPDATE(.F., .F., m.lc_cursor)

 * Error(s) returned from server

 IF AERROR(la_error) > 0

 FOR m.ln_error = 1 TO ALEN(la_error,1)

 IF la_error(m.ln_error,1) = 1585

 * Another user has edited the current record

 …

 ENDIF

 ENDFOR

 ENDIF

 ENDIF

The values that have been changed by the other user may be checked with the
GETFLDSTATE, CURVAL, and OLDVAL functions and the update forced on the server with

the FORCE parameter of the TABLEUPDATE command after setting any acceptable

changes from the server record into the current record:

IF TABLEUPDATE(.F., .T., m.lc_cursor)

 * Other users changes have been overwritten

ELSE

 * There are still some errors in the data

 …

ENDIF

The Update Criteria of remote views may be set up as KEY AND

MODIFIED FIELDS so the optimistic locking will fail only if users

have attempted to update the same field on the same record.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 44

A series of dependent transactions should employ manual
transactions on the cursor and use SQLCOMMIT and

SQLROLLBACK to ensure that all the transactions in the sequence

are rolled back on the server if there is an error.

Commit and Rollback

Data Buffering is a very effective way of controlling updates onto the server. Some
sequences of transactions however are very sensitive and full commit and rollback
functionality may be required.

Visual FoxPro implements server side transaction processing at the level of the
connection. The Transactions property of the Connection is set to Manual and the
SQLCOMMITand SQLROLLBACK functions become operational.

Commit and Rollback work on top of data buffering so both may be used concurrently with
the commit and rollback wrapping around the data buffering.

The Connection handle of the current cursor representing a remote view can be
determined easily and the transactions set to manual. Commit and rollback is now in
operation for the cursor:

m.ln_Connect = CURSORGETPROP('connecthandle')

m.ln_Transactions = SQLSETPROP(m.ln_Connect, ;

 'transactions', 2)

IF NOT m.ln_Transactions == 1

 * Error

 …

ENDIF

Similar code is required to set commit and rollback on any connection for use with pass
through queries.

Data processing takes place in the normal way with TABLEUPDATE and TABLEREVERT.

The changes may be committed into the server with the following command:

IF SQLCOMMIT(m.ln_connect) == 1

 * Committed OK

ELSE

 * Error

ENDIF

Rollback is achieved with the SQLROLLBACK command and should be used in conjunction

with TABLEREVERT to refresh the table although these may become out of

synchronisation with the table and a REQUERY may be required.

IF SQLROLLBACX(m.ln_connect) == 1

 * Rollback OK

 = REQUERY('authorscontractview')

ELSE

 * Error

ENDIF

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 45

8. Form and Data Environment Properties

A form is created for a remote view in exactly the same manner as a standard form
except that the Views radio button must be selected in order to select the view when
adding a table into the Data Environment.

Adding a View into the Data Environment

The table buffering on the view is automatically set to optimistic row buffering so that the
data is saved onto the server automatically each time the record pointer is moved.

• The BUFFERMODE Form property may be used to specify OPTIMISTIC buffering

which will default to Table Level buffering for each table.

• The BUFFERMODEOVERRIDE property may be set in each cursor in the data

environment to specify specific buffering mode for each type.

SET MULTILOCKS ON is required for table level data buffering.

This should be set into forms with Private Data sessions.

There are no differences between using a remote view and using a local view or indeed a
native FoxPro table. The table buffering commands should be used to control the updates
onto the server however and account needs to be taken of errors being returned from the
server.

Add and delete functionality can be implemented once record buffering is employed on a
form. Appending records, in particular, can be problematical when using APPEND BLANK

combined with unique indexes defined in the database container unless record buffering
is employed.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 46

9. Optimising Views and CursorAdapters

There are many considerations when optimising Visual FoxPro for client-server operation.
The art to Client-Server optimisation is to ensure that the minimum amount of information
is sent to the workstation with the minimum number of transactions. FoxPro has many
features designed to help optimise the transactions.

Some of the optimisations result from common sense or good database design whereas
others involve detailed setup of the FoxPro components used in client-server computing
or use of server functionality to perform processing on the server.

Advanced Options

Remote Views are usually defined with the View Designer or may be defined with the
CREATE VIEW command. Remote Views are essentially SQL SELECT statements and

care is required to ensure that the indexes and other performance features are set up
correctly for maximum performance on the server. If the server is taking too much time to
return the query the workstation cannot speed up.

The Advanced Options for a View can be used to specify options that affect performance
at the Workstation but do not alter any server side characteristics.

Remote View Advanced Options

The number or records to fetch at a time (FETCHSIZE) allows FoxPro to perform a

progressive fetch for an asynchronous query. Control returns to the application after the
specified number of records have been received from the server and the remainder are
received in the background. This value might be set lower when running an application
over a modem line.

The Connection should be asynchronous for the number of
records to fetch at one time to apply. A synchronous query will
retrieve all the records at once before returning control to the
application.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 47

The maximum number of records (MAXRECORDS) will prevent the Workstation from

receiving more records than specified. Note here that some servers will carry on
processing regardless but the workstation process will stop after receiving the number of
records specified.

The Fetch Remote Data As Needed option (FETCHASNEEDED) modifies the behaviour of

the progressive fetch so that processing does not automatically continue in the
background and records are only fetched from the server when requested by the
application.

Too many memo fields can clog up network traffic and the Fetch Memo option
(FETCHMEMO) allows memo fields to be brought over from the server only when the

required field is active in the View. The character length for the memo fetching to operate
can also be determined.

Some remote views, especially parameterised views, may be executed repeatedly in an
application. The server will interpret the SQL statement passed by the remote view each
time the view is requeried. The Precompile SQL on Backend Server option (PREPARED)

will allow the SQL statement to be compiled on the server and run faster on subsequent
requeries. Not all Servers will support precompilation however.

Remote View Properties

The properties defined for a Remote View may also be defined with the DBSETPROP

command as an alternative to the Advanced Options window in the Database Designer.

The Advanced Options correspond to the following database container properties for a
view:

• BatchUpdateCount

• CompareMemo

• FetchAsNeeded

• FetchMemo

• FetchSize

• MaxRecords

• Prepared

• ShareConnection

• UseMemoSize

The PREPARED property is important especially for parameterised views that are called

repeatedly. SQL Server allows SQL statements to be compiled on the server so that
performance is faster on subsequent re-use. Performance on subsequent requeries of a
parameterised view will increase if a parameterised view is prepared on the server the
first time it is executed.

DBSETPROP('authorscontractview', 'view', 'prepared', .T.)

In addition, the BATCHUPDATECOUNT can be used to automatically batch a number of

transactions before sending them to the server. In a high transaction environment, this
allows several updates to be processed with a single transaction over the network
transaction and can help reduce network traffic.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 48

The transactions sent to the server can be controlled
programmatically by setting table level buffering and using
TABLEUPDATE() to update the server as required.

There are other properties of a view and of fields in a view which can be useful in
determining the structure of the remote view. These are documented in the help under the
DBSETPROP topic.

CURSORSETPROP can be used to alter some of these properties

after the view has been opened.

Recommended Settings

The following recommendations for initial remote view settings should cover most
situations and ensure adequate performance:

• SendUpdates should be true.

• Shared Connection.

• Update key and modified fields.

• Asynchronous Queries under careful program control (remember to SQLCANCEL

before running a subsequent query) or synchronous with careful use of the
timeouts to protect against runaway queries.

• 100 Records fetched at a time (10 for dial up access).

• FetchMemo to retrieve memos only when required.

• FetchAsNeeded.

• Do not CompareMemo on update.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 49

10. SQL pass-through

Pass though queries bypass FoxPro functionality and execute a query or command
directly on the server. The results are returned from the server into a read-only local
workstation cursor.

SQL pass through queries can exploit functionality built into the ODBC driver to add
features such as outer joins or date manipulations to the query. These ODBC extensions
are interpreted by the driver so that the same syntax can be applied across multiple
database servers.

SQL pass though queries can also bypass the ODBC driver to perform operations on the
server in the native server syntax. This can be used to optimise queries by using specific
server syntax and also to run housekeeping and other functions that need not necessarily
return a results set.

Cursors created with a SQL pass through command do not
automatically update on the server

Pass through queries often use a combination of commands:

• SQLCONNECT is used to create a connection to the server using either an ODBC

datasource or more often a connection from the current database container.

• SQLSTRINGCONNECT is used with a complete connection string to avoid having

to define a datasource on the workstation.

• SQLEXEC will execute a query directly on the server.

• SQLCANCEL will cancel a query on the server.

• SQLMORESULTS is used if more than one results set is returned from the server in

non-batch mode.

• SQLPREPARE can be used to prepare (compile) statements on the server for

subsequent re-execution.

• SQLDISCONNECT is used to close the connection.

The SQLCONNECT function is passed the name of an ODBC datasource or connection in

the current database container and will return a positive number representing the
connection handle if the connection with the server is made successfully.

m.ln_connect = SQLCONNECT('conPubs')

IF m.ln_connect < 1

 * Error

 ….

ENDIF

The connection handle returned from SQLCONNECT is now used to execute the pass
through query onto the server. This example executes a housekeeping function on the
server that does not return a results set:

m.ln_exec = SQLEXEC(2, 'UPDATE STATISTICS authors')

A negative value returned from SQLEXEC indicates an error which requires the
AERROR() function to provide further information. A value of one indicates that the query
has completed and a value of zero indicates that the query is still processing.

The following pass through query will return a read only cursor called CURSALES:

m.ln_exec = SQLEXEC(2, 'SELECT * FROM sales' , 'cursales')

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 50

The SQLEXEC can be used to create more than one results set simultaneously by
separating the queries with a semi-colon. The following example will return two results
sets from the server, one containing a read only view of the sales table, and the second a
read only view of the authors table:

? SQLEXEC(1, 'SELECT * FROM sales;SELECT * FROM authors' ,

'cursales')

In this case the SQLEXEC returns a 2 indicating that two results sets have been created
on the workstation (CURSALES and CURSALES1).

Asynchronous Mode

SQL Pass Through queries may use an asynchronous connection to pass results onto the
application before the query has finished processing.

The Asynchronous property of the connection can be set using the connection designer or
programmatically with the SQLSETPROP() command:

? SQLSETPROP(1, 'asynchronous', .T.)

The SQLEXEC command may now be issued and will return zero while still executing.

m.ln_exec = SQLEXEC(1, 'SELECT * FROM sales', 'cursales')

IF m.ln_exec < 0

 * Error

 …

ELSE

 IF USED('cursales')

 BROWSE

 ENDIF

ENDIF

The command is issued again periodically to check if processing has finished when one is
returned.

IF SQLEXEC(1, '') = 1

 * Finished

 …

ENDIF

The query can be cancelled when enough records have been retrieved with the
SQLCANCEL command:

? SQLCANCEL(1)

Batch Mode

Batch mode can be set on the Connection so that multiple queries are not returned
simultaneously but one after another. This allows the first table to be processed before
receiving the second.

The Batch property of the connection can be set using the connection designer or
programmatically with the SQLSETPROP() command:

? SQLSETPROP(2, 'batch', .F.)

The non-batch pass through query is now executed and only the first results set is
returned.

? SQLEXEC(1, 'SELECT * FROM sales;SELECT * FROM authors' ,

'cursales')

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 51

The second results set is waiting to be sent to the server and must be retrieved with the
SQLMORERESULTS function which used the connection handle as a parameter and will

return 2 because the second results set is created. This function is called until the final set
is retrieved.

? SQLMORERESULTS(1)

The SQLCANCEL command is used to cancel a query whenever required:

? SQLCANCEL(1)

SQL Pass Through and Data Buffering

SQL Pass Through queries execute a statement directly on the server and often return a
cursort. This cursor might be the product of a system procedure or a standard SQL
SELECT statement. Whatever the nature of the cursor it is read-only.

Sometimes it is useful to make a results set from a pass through query updateable. A
remote view may not be possible if some functionality specific to the server is included in
the SELECT statement or if a more flexible approach than parameterised queries is
required.

A pass through query is used to create a results set which is represented as a cursor in
FoxPro. The cursor has many properties that may be set with the CURSORSETPROP

command. A remote view automatically sets these properties to allow the cursor to be
updateable. With a results cursor from a pass through query these properties must be set
programmatically.

The simple example where a remote view was created to show authors with contracts can
be implemented as an updateable pass through query by following a fairly complex
procedure.

First make a connection handle to the required datasource or connection. Various
connection properties can be set to create asynchronous queries and so forth. These
examples use the default settings.

m.ln_Connect = SQLCONNECT('odbpubs')

IF m.ln_Connect < 0

 * Error

 …

ENDIF

Now create the results set as required using the SQL pass though commands. In this
instance the value for the Contract field will not be a logical because it is stored as a Bit
field on the server. The SELECT statement is presented directly to the server and will not
automatically translate datatypes (unless a parameter is specified):

m.ln_exec = SQLEXEC(m.ln_connect, ;

 'SELECT * FROM authors WHERE contract = 1', ;

 'curauthorscontract')

IF m.ln_exec < 0

 * Error

 …

ENDIF

The cursor has not been created but is read-only. Several cursor properties need to be
set in order for the cursor to be updateable:

• SENDUPDATES must be set True for updates to be passed back to the server.

• TABLES must specify the server tables used in the view.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 52

• KEYFIELDLIST must contain a comma separated list of key fields.

• UPDATENAMES should contain a comma separated list with the FoxPro field name

then a space and the full serve alias table and field name. This must include the
primary key fields.

• UPDATABLEFIELDLIST must contain a comma separated list of updateable

fields.

A useful technique to determine these settings is to use the
CREATE SQL VIEW command to create a similar remote view on
the database and then use DBGETPROP() to determine the
required property settings.

The following code, executed at the command line, will set all the required properties on
the cursor to allow updates to be made to the forename and surname fields:

? SQLEXEC(1,'select * from authors','autest')

SELECT autest

? CURSORSETPROP('sendupdates', .T.)

? CURSORSETPROP('tables','authors')

? CURSORSETPROP('updatename', 'au_id authors.au_id,au_lname

authors.au_lname,au_fname authors.au_fname')

? CURSORSETPROP('updatablefieldlist','au_lname,au_fname')

? CURSORSETPROP('keyfieldlist', 'au_id')

There are many other properties that can be set against both the
cursor and the connection using CURSORSETPROP and

SQLSETPROP respectively. Refer to on-line help for more details.

Preparing SQL Statements

SQLPREPARE can be used to prepare SQL statements on the server. The statement is

prepared on the server and will execute faster when subsequently executed and is
therefore of most benefit for complex select statements with parameters that are run
repetitively:

Complex select statements may be better implemented as a
stored procedure on the server as the server may be able to store
and monitor an optimised plan for executing the SQL efficiently.

A connection is used for the prepared statement and the statement must be prepared
again if another pass through is executed on the connection. The SQLPREPARE()
command is then used to pass the statement through to the server. Any parameters must
have been previously defined.

m.ln_Connect = SQLCONNECT('conpubs')

m.lc_surname = SPACE(0)

m.ln_prepare = SQLPREPARE(m.ln_connect, 'SELECT * FROM authors

WHERE au_lname LIKE ?lc_surname','cursurname')

The statement is now prepared and the SQLEXEC can be used to run the query. The
SQLEXEC behaves normally and may need to be run several times until a 1 is returned
depending on the size of the query:

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 53

m.lc_surname = '[a-d]%'

? SQLEXEC(m.ln_connect)

Subsequent changes to the parameter and execution will use the prepared statement.

The statement needs to be prepared again if the connection is
used for another query.

ODBC Extensions

ODBC Drivers have various extensions to the SQL Syntax that allow functions to be
implemented transparently without relying on specific functionality of the back end server.

There are various scalar functions, for example, that allow string and date conversion and
other formatting to be implemented without relying on the native syntax of the database
server. SQL pass through statements that use these extensions will function with any
ODBC driver that supports them.

The {} brackets indicate to the ODBC driver that ODBC extensions are in operation and
the driver will interpret the function and pass it onto the server.

Date functions are useful when passing date values to the database server:

? SQLEXEC(1,[select * from sales where ord_date = {d '1992-06-

15'}])

The following example will convert the surname field to upper case and provide a
SOUNDEX value for the surname without using server resources:

m.ln_sql = SQLCONNECT('odbpubs')

? SQLEXEC(m.ln_sql, 'select au_id, { fn ucase(au_fname)},

au_lname, {fn soundex(au_fname)} as soundex from authors',

'curauth01')

Note that in the above example, SOUNDEX is also a SQL Server function and would work
without the ODBC {} brackets. The UCASE function however is an ODBC extension as
the SQL Server syntax is UPPER.

Another example uses date functions to determine the year and week of employment
using the HIRE_DATE datetime field in the EMPLOYEE table:

? SQLEXEC(1, 'SELECT *, {fn year(ord_date)} year, {fn

week(ord_date)} week, {fn dayofweek(ord_date)} dow FROM sales')

Date conversion functions are amongst the most useful of the ODBC scalar functions as
each server seems to have its own date format. The following pass through query uses
the ODBC CONVERT function to query all employees hired on or since Christmas 1992:

? SQLEXEC(m.ln_sql, [select * from employee where hire_date >= {

fn CONVERT ('1992-12-25', SQL_TIMESTAMP)}])

Outer Joins may also be specified with ODBC extensions as follows:

? SQLEXEC(1, [SELECT authors.*, titleauthor.* FROM {oj authors

LEFT OUTER JOIN titleauthor ON authors.au_id = titleauthor.au_id}]

)

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 54

Stored Procedures

One of the best ways to improve application performance is to implement server side
functionality using stored procedures. These can be called easily using the SQLEXEC

command and often return results sets.

The PUBS database has a stored procedure which can be called with a SQLEXEC to

return a results set of authors with a particular royalty rate:

m.ln_handle SQLCONNECT('conpubs')

m.ln_exec = SQLEXEC(m.ln_handle, [exec byroyalty 40])

The stored procedure may also be called with a parameter:

m.ln_royalty = 40= SQLEXEC(1, [exec byroyalty ?m.ln_royalty])

Some stored procedures may return values by reference. The following example requires
three integer parameters. The first parameter is passed by reference and receives the
result of adding the remaining two parameter values together.

The parameter may be passed by reference, as an OUTPUT parameter, using the ODBC
extensions for calling a stored procedure as shown below:

m.ln_result = 0

m.ln_exec = SQLExec(1, "{CALL stpmathtutor (?@m.ln_result, 2, 4

)}")

Be careful when using output parameters with asynchronous
queries as the parameter may not be updated until the final
records are retrieved.

Stored procedures often return an integer value to indicate the
success status. I have yet to find a method to obtain this value
using ODBC. You need to use ADO to get the result back from a
stored procedure

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 55

11. ADO and XML

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 56

12. Offline Views

Offline Views allow a remote view to be created as a local cursor in the usual way and the
server connection to be severed and reconnected at a later time.

Offline views are useful for creating local copies of non-volatile data which can record
changes for updating onto the server at a later date. Offline views are particularly useful
for distributing data onto remote computers. A salesman can take data away on a laptop
and update any changes back onto the server on their return.

The CREATEOFFLINE syntax is used to create the Offline view. The command simply

defines a view in the currently open database container and a filename for the local
cursor:

OPEN DATABASE dbcpubs

? CREATEOFFLINE('vueauthor','c:\temp\authors')

Once created the Offline view can be used with the ADMIN keyword of the use command
which will refer to the local copy of the data and not require access to the server:

SET MULTILOCKS ON

USE c:\temp\authors ADMIN

The connection to the server can be re-established using the ONLINE keyword of the USE

command. The changes can now be updated onto the server using the standard data
buffering techniques:

USE c:\temp\authors ADMIN

IF NOT TABLEUPDATE(.T.)

 * Errors updating offline view

 …

ENDIF

The Offline View may be dropped without updating the server with the DROPOFFLINE

command:

DROPOFFLINE('vueauthor').

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 57

13. Client-Server Application Design

Various bottlenecks need to be addressed when designing an application that is optimised
for client-server operation. This section discusses the broad issues and indicates how the
application should be designed for maximum performance.

Performance Bottlenecks

Client-server designs using front-end languages designed for a graphical user interface
suffer from the user expectations of flexible and on-demand access to data. User
expectations of an interface similar to a local spreadsheet together with system
requirements to run up to hundreds of users simultaneously over the network require that
considerable care must be taken over performance considerations.

The final user interface needs to be a trade off between the performance issues and the
usability that is built into the application. It is possible to build mainframe style applications
that support hundreds of users at the cost of usability or very usable database
applications that support only ten users.

Some of the performance issues are detailed below:

• Network traffic is the greatest bottleneck requiring that a minimum amount of data
is transferred between client and server with a minimum number of transactions
in high volume transaction processing systems.

• Many validations can be performed locally within the application to prevent the
loop of updates being attempted on the server, error messages passed back,
changes made locally, and then reissued onto the server.

• Server resources can quickly be consumed with certain types of application
design and front end programming tools. For example, each user requires at least
one connection on the server which requires some server memory. Some
applications may use several server connections for each user thus overloading
the server.

• Some database servers can perform a considerable amount of processing on the
server if the appropriate triggers and stored procedures are set up. This
functionality is server specific and will not allow the application to work with all
servers but will significantly reduce traffic for many types of transaction.

• Pass through queries can exploit high performance features of a particular server
to take the load off the client and onto the server.

Parameterised Views

Parameterised Views are of great importance in reducing the amount of data retrieved
from the server at any one time. Care should be taken that appropriate indexes are set up
so that the server can optimise the remote view and a small amount of data is always
specified.

Only the required fields (and primary keys) need be specified in a remote view. Be careful
with memo and text fields and use the view parameters to reduce the network traffic for
these large fields.

Some servers, including SQL Server, place read locks onto records when they are read
as part of a transaction that may be followed by updates. The number of records could be

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 58

kept to a minimum here or the transaction terminated to release the locks and reduce
server overheads in a high volume situation.

Preparing the view on the server will improve performance for a view that is repeatedly
queried many times for a single user.

Local Validations

Performing some validations programmatically at the workstation instead of relying on the
server validations will reduce the number of transactions passing over the network due to
incorrect user entry.

Field and Record level validation can be implemented using the local data dictionary or
application logic on the workstation. These validations should not require any checks with
data from the server so no network traffic is generated.

Field level validation is specified in the View Designer whilst
Record level validation rules may be specified for a remote view
using the DBSETPROP() command to set the RuleExpression
property for the View.

Validations that require checks on server data are better performed on the server. This
applies particularly to referential integrity checks and also to complex record level
validations that can be performed with a Trigger.

In some cases a local copy of the server data should be made to reduce network traffic.
For example, if a product list is relatively static, a local copy of the table could be made at
the beginning of processing so that all validation is performed locally.

An Offline View can be used to create a hybrid system where near
static data is updateable by the user who will only see local
changes to the tables until the next time the view is created.

Validations that are checked locally will also need to be implemented on the server if other
applications are accessing server data. The cost of this approach is that changes need to
be made to the server and client data dictionaries each time a change is made to the
business rules affecting the application. The workstation application will also need to be
upgraded each time a change is made.

Transactions

The frequency and size of transactions between the client and server can be controlled by
the design of the application. Try to retrieve a small amount of data to the user and
update in one transaction wherever possible to reduce network traffic.

Encourage the user to select a small number of records by providing a usable selection
window that allows pinpointing of a small number of records before retrieving the data
from the server.

Many data entry forms may search for information on a parent table and only show child
related information if required. For example, an accounts system might allow the user to
search for an invoice and then display the line items. Two views could be used in this
case so that the line items are retrieved only if required for display to the user.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 59

Some applications have several users constantly entering data. This data may not be
required immediately on the server and the number of transactions may be reduced by
updating the server after ten records have been entered instead of each time one record
is entered.

Similarly changes to multiple records that form part of a transaction could be stored on the
workstation and issued to the server in one transaction using table buffering rather that
issuing several transactions followed by a commit or rollback.

Stored Procedures

Stored Procedures are passed directly to the server and can use whatever performance
enhancement functions are supported by the server. SQL Server applications might use a
stored procedure to return required information for example.

One example that creates huge gains in performance involves sequences of transactions
that are common in accounting applications where a transaction is made in one account
and several other corresponding transactions must be made in other ledgers for double
entry book keeping.

Many applications would issue a begin transaction on the server, issue the first
transactions followed by a transaction for the double entry in the other tables, and then
commit. All of these transactions could be performed in a single stored procedure by
passing the amount and the ledger names to the procedure. Only one transaction is
passed to the server and the server performs all the subsequent transactions locally. In a
high volume scenario this improves performance considerably.

Other examples might involve the creation of a temporary table on the server and running
various procedures before returning the final results set to the workstation.

SQL Server can also call external stored procedures to compiled DLL programs on the
server to integrate with mail, Internet, or other infrastructure systems in the organisation.
This requires only one connection to the resource for all database users and may reduce
overall network load.

SQL Pass Through

The server may have extensions to standard SQL that allow better server performance
through the use of proprietary language features. If performance is critical, these may
improve performance whilst tying the application to the particular database platform.

There are some ODBC extensions that may help in creating pass through queries that
operate on several servers. These are particularly useful for date arithmetic and left outer
joins.

One clever trick to improve performance might be to create long strings of commands that
can be sent to the database server as a single command. A series of one hundred
INSERT statements separated with semi-colons and sent to the server as a SQL pass
through statement might be faster than appending records with a remote view.

Connections

Some applications will use more than one connection to retrieve data from the server. A
grid might retrieve data using one connection, a form using another, and a combo control
on a form yet another.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 60

Care should be taken to reduce the connections per user (by using shared connections)
as these consume valuable resources on the server. Remember that SQL pass through
statements can use the same connection handle as remote views.

Microsoft Transaction Server

The 3-tier model of programming promoted by Microsoft can work very well in many
situations. In this case an application server runs business components as small objects
which can easily be instantiated on separate client workstations. All communication with
the database server passes through this middle layer of software components.

Microsoft Transaction Server handles all the software configuration issues and the
software behaves as if it is running on the local workstation. This allows Visual Basic or
Microsoft Office applications access to complex database functions written in FoxPro
without requiring FoxPro to be installed locally. It is also the recommended method for
implementing web pages with ASP.

However, it is likely that a native FoxPro application will perform better by accessing the
ODBC driver directly from the workstation than it would by using a three-tier software
architecture to access a remote automation server.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 61

14. Database Maintenance

Upsizing a FoxPro Database

FoxPro has an upsizing wizard which does a good job of converting a FoxPro database
onto SQL Server. The wizard attempts to move as much of the database information as
possible onto the server including indexes, defaults, rules and relationships as well as the
data itself. A series of reports are generated along with the SQL so that the process can
be repeated and tweaked until successful.

It is left to the programmer to create the (parameterised) remote views in a new database
container to begin the process of converting the underlying application. In theory the
application will work by replacing the tables in the database container with remote views
of the same name and using a shared synchronous connection with table buffering.

In practice however, as a minimum you will need to look at the following:

• Use shared connections for the remote view.

• Add parameters to the remote views to minimise the records returned. You may
need to create several views on the same table for different access paths. Keep
the fields to a minimum and take care with memo fields.

• Review the indexes on the SQL tables and remember that SQL tends to use a
single index for selection optimisation. Try to create 'covered' indexes that contain
all the fields used to select data.

• Be very careful with clustered indexes. The should represent the most frequently
used ORDER BY criterion rather than the primary key and try to avoid using a
sequence that is the same as the order of insertion (e.g. Invoice Number) for high
transaction volume tables.

• Use table buffering for greater control over the timing of updates to the server.

• Define stored procedures on the database server for regularly called routines that
update several records.

Visual FoxPro Upsizing Wizard

The Upsizing wizard is located in the Tools-Wizards-Upsizing menu option and is used to
automatically upsize the tables defined in an existing database container.

An ODBC Driver should be defined on the workstation to access the SQL Database
before the upsizing wizard is used. It is good practice to plan and create the SQL
Database using the SQL Server utilities although the upsizing wizard will let you create a
new database. A SQL Database will usually be 1.5 times the size of the FoxPro database
files.

The first few pages of the Upsizing wizard prompt for the following criteria:

• Database Container to be upsized.

• An ODBC DataSource that has already been setup on the workstation to point to
the SQL Server. A valid login password may be required at this point.

• The selection of Tables to be upsized.

It is then possible to view all the fields for each table and alter the default field type
specified for SQL Server. This is useful for using SQL Server User Defined Datatypes or
to conform with standards that existing front-end application software may require.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 62

Adding a Timestamp field will enable the Key and Timestamp updating option to be set for
the remote view which improves performance when checking to see if other users have
made changes to the record being edited..

The Identity column allows for automatic incrementing primary keys which will create new
primary key values without the need for any application level logic.

Mapping Field Types with the Upsizing Wizard

Creating a Database using the Upsizing Wizard

The upsizing options allow selection of the required components to update. The advanced
options allow specification of clustered indexes but should be used with caution.

It is often easier to upsize several times without any data until the
process is successful and then append the data into the remote
views.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 63

Upsizing Options

The final window allows for the generated SQL to be saved and the upsizing process to
begin. The process may take considerable time if there is a lot of data.

A folder called UPSIZE is created and contains a project containing various tables and
reports run to view any errors occurring during the upload. The project tables contain
details of the upsizing process. Notice the one record table called SQL_UW that contains
the SQL used to generate the schema on the database server.

A useful approach is to upsize the FoxPro database without any
data and fix any errors before creating views and importing the
data by opening the view and using the APPEND FROM
command.

Some errors occur because features defined in the FoxPro Database Container are not
available in SQL Server. A default value for a field may be determined by a User Defined
Function in the local database container. This code may not be upsized onto SQL Server
and an error occurs. Another common error is that a fieldname clashes with a reserved
word in SQL Server.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 64

Upsizing Error Report

Upsizing Considerations

The defaults used by the Upsizing wizard may not be the best to use in practice. Some
properties of the FoxPro database container may not move successfully into the server
database because of differing functionality, and index design criteria may be different for
FoxPro and SQL Server optimisation.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 65

Upsized Table viewed in the SQL Enterprise Manager

Some considerations which may be useful when upsizing a FoxPro database are detailed
below:

• Select the correct format for numeric fields to save on disk space.

• Wide text fields with values of different widths may be better stored as VARCHAR
fields to save on disk space.

• Take care with memo fields which will automatically assign 2K of disk space for
each record even if the memo is empty. Make sure Nulls are allowed for memos
if a large proportion are empty.

• Some field defaults and validations may pass successfully over to SQL Server.
Anything remotely complex will have to be rewritten as a Transact-SQL Trigger.

• Index design with SQL Server should favour more composite indexes designed
around the most common queries rather than the FoxPro design of many
independent indexes for each part of the query expression.

• Take care when assigning clustered indexes.

• Remember to update statistics after the data has been loaded, or the query
optimiser will not function correctly.

• Referential integrity may be implemented easily in the database server.

• FoxPro stored procedures are not upsized and must be rewritten on the server or
implemented as View record level validation.

• SQL Server cannot index on Bit (logical) fields only.

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 66

Data Manipulation Language

ODBC Supports a variety of data manipulation commands that conform to basic SQL
standards. This allows for the initial definition of a table and the setting of indexes and
primary key features.

ODBC 2.0 drivers have extended these definitions and the Microsoft ODBC Driver for
SQL Server 2.5 supports a full set of Database Manipulation commands.

Not all ODBC Drivers will support the full set of data manipulation
commands.

The Data Manipulation commands may be passed directly to the ODBC Driver using the
SQLEXEC command. A connection handle is first defined with the SQLCONNECT function.

The SQLCONNECT command may be entered at the Command Window as follows. The

result is printed on the screen and a -1 indicates there is a problem and the connection
has not been made. You are prompted to log into SQL Server when the connection is
made.

? SQLCONNECT('odbSales')

The error message returned from the server if a SQL command
fails may be viewed with the AERROR() command.

Several Connections may be made from one workstation to the server and the correct
handle must be used in the SQLEXEC command. The SQLEXEC Command will also
return a -1 in the event of failure and passes the command directly to the ODBC Driver.

An index may be created on a remote data source by sending the CREATE INDEX DML
command to the driver with the SQL EXEC Command:

? SQLEXEC(2, ;

 'CREATE INDEX quantity ON sorditem (quantity,unitprice)')

ODBC Supported Data Manipulation commands include the following SQL Statements
with a syntax identical or extremely similar to a standard Visual FoxPro statement:

• CREATE TABLE

• CREATE INDEX

• ALTER TABLE

An easy way to determine the required SQL DML command is to
create the required structure in Visual FoxPro and then use the
Upsizing Wizard to generate the SQL Script only.

ODBC does not like the COLUMN keyword in the ALTER TABLE

Command:

SQL Pass Through command can be used to pass statements directly to SQL Server to
allow SQL Server specific functionality to be implemented.

This could be used to create a view for example:

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 67

? SQLEXEC(2, [CREATE VIEW CustView AS SELECT * FROM customer

WHERE company LIKE 'C%'])

CREATE TABLE
CREATE TABLE [database.[owner].]table_name

(

 {col_name column_properties [constraint [constraint

[...constraint]]]

 | [[,] constraint]}

 [[,] {next_col_name | next_constraint}...]

)

[ON segment_name]

The CREATE TABLE command can be used to create tables using the standard SQL
functionality for defining fields but may also be extended to define constraints for the
default and simple checks as well as primary and foreign keys and full referential integrity
checking.

The following example is used to create the Titles table in the PUBS database and can be
found in the INSTPUBS.SQL script. Note that scripts can easily be generated from
existing databases to provide a view of the CREATE TABLE syntax.

CREATE TABLE titles

(

 title_id tid

 CONSTRAINT UPKCL_titleidind PRIMARY KEY CLUSTERED,

 title varchar(80) NOT NULL,

 type char(12) NOT NULL

 DEFAULT ('UNDECIDED'),

 pub_id char(4) NULL

 REFERENCES publishers(pub_id),

 price money NULL,

 advance money NULL,

 royalty int NULL,

 ytd_sales int NULL,

 notes varchar(200) NULL,

 pubdate datetime NOT NULL

 DEFAULT (GETDATE())

ALTER TABLE
ALTER TABLE [database.[owner].]table_name

[WITH NOCHECK]

[ADD

 {col_name column_properties [column_constraints]

 | [[,] table_constraint]}

 [, {next_col_name | next_table_constraint}]...]

ALTER TABLE is very useful for adding or modifying the definition of existing Tables. It is
particularly useful when writing upsizing programs as it performs many of the tasks that
can be carried out using the SQL Enterprise Manager in a program.

CREATE INDEX
CREATE [UNIQUE] [CLUSTERED | NONCLUSTERED] INDEX index_name

 ON [[database.]owner.]table_name (column_name [,

column_name]...)

[WITH

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 68

 [FILLFACTOR = x]

 [[,] IGNORE_DUP_KEY]

 [[,] {SORTED_DATA | SORTED_DATA_REORG}]

 [[,] {IGNORE_DUP_ROW | ALLOW_DUP_ROW}]]

[ON segment_name]

CREATE INDEX can also be used programmatically to create indexes without using the
Enterprise Manager.

GENDBC.PRG

FoxPro ships with an excellent utility called GENDBC which creates SQL DML code from
the current open database container and places the results in the specified program file.
Much of the syntax is consistent with syntax that can be run on the server with a script or
by using SQL pass through.

OPEN DATA tastrade

DO HOME() + 'tools\gendbc\gendbc' WITH 'c:\temp\fred'

MODIFY COMMAND c:\temp\fred

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 69

15. Index

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 70

·SQLDISCONNECT 46
AERROR..................................... 37, 39, 63
ALTER TABLE .. 64
APPEND BLANK 37, 42
asynchronous .. 43
Asynchronous Connection 18, 47
BATCHMODE ... 16
BATCHUPDATECOUNT 44
buffering .. 7
BUFFERMODE 36, 42
BUFFERMODEOVERRIDE 8, 36, 42
Commit ... 41
CONNECTBUSY 16
Connection .. 6, 56

Batch Mode ... 47
Shared ... 27
Timeout property 15

Connection Designer 15
CONVERT .. 50
CREATE CONNECTION 16
CREATE INDEX 63, 64

CREATE SQL VIEW 7, 26
CREATE TABLE 63
CREATEOFFLINE 53
CURSORGETPROP 41
CURSORSETPROP 45, 48

Buffering .. 36
setting defaults 17

CURVAL ... 39
Data Buffering 36, 48

Optimistic Locking 36, 40
Pessimistic Locking 36

Data Manipulation Language 62

DBSETPROP 7, 26, 27, 45, 55
DISPLOGIN .. 16
DROPOFFLINE 53
Error Handling ... 39
FETCHASNEEDED 44
FETCHMEMO ... 44
FETCHSIZE 18, 43
Field

Upsizing ... 58
form ... 8, 42
GENDBC.PRG .. 65
GETFLDSTATE 38
GETNEXTMODIFIED 39
Join

Outer ... 22
KEYFIELDLIST 48
MAXRECORDS 43
MODIFY CONNECTION 14
NODATA ... 7
NODATAONLOAD 8
ODBC.. 12, 58

Connection Pooling 14
connection string 12
Data Source Administrator 13
Performance Tips 14
Scalar Functions 50

Offline View ...55
OLDVAL ..39
Outer Joins ..50
PACKETSIZE ..16
Parameterised View21, 25, 28
Pass Through SQL46, 48, 56, 63
Performance ...54
PREPARED29, 44
remote view ...6, 26

update criteria27
Remote View ...43

prepared property44
REQUERY7, 25, 29, 41
Rollback ..41
RULEEXPRESSION19
SENDUPDATES48
SENDUPDATES7, 26, 27, 29
SET MULTILOCKS ON42
SETFLDSTATE39
SOUNDEX ..50
SQLCANCEL ..46
SQLCOMMIT17, 41
SQLCONNECT46, 48, 63
SQLEXEC6, 46, 63
SQLMORESULTS46
SQLPREPARE46, 49
SQLROLLBACK17, 41
SQLSETPROP41, 47

setting defaults17
SQLSTRINGCONNECT6
SQLTABLES ...6
Stored Procedure8, 51, 56

Make Updateable48
parameter ..51
parameter by reference51

TABLEREVERT40, 41
TABLES ..48
TABLEUPDATE7, 37, 39, 41, 44

Force Parameter40
Transactions ...55
TRANSACTIONS17
UCASE ..50
UPDATABLEFIELDLIST49
UPDATENAMES48
UPDATETYPE ..27
Upsizing Wizard58
USE ...28

ADMIN ...53
NODATA ...28
NOREQUERY28
ONLINE ...53

view designer ..19
fields ..20
filter ..21
Group By ...23
join ...22
Order By ..22
Update Criteria23

WHERETYPE ...27

Visual FoxPro Client-Server Handbook

© REDWARE 2004. 71

